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The molecules of the title compound, C26H34, possess crystal-

lographically imposed inversion symmetry. The anthracene

ring system is planar within 0.038 (1) Å. The two methyl

groups in each independent isopropyl group are oriented on

either side of the anthracene plane. In the crystal structure, the

molecules adopt a herringbone-like arrangement without �–�
stacking.

Related literature

For the preparation and solid-state fluorescence studies of

1,4,5,8- tetraalkylanthracenes, see: Kitamura et al. (2007). For

a related structure, see: Kitamura et al. (2010). For related

herringbone structures, see: Curtis et al. (2004).

Experimental

Crystal data

C26H34

Mr = 346.53
Monoclinic, P21=c
a = 6.546 (3) Å
b = 10.357 (5) Å
c = 15.808 (8) Å
� = 98.289 (8)�

V = 1060.5 (9) Å3

Z = 2
Mo K� radiation
� = 0.06 mm�1

T = 223 K
0.50 � 0.07 � 0.05 mm

Data collection

Rigaku/MSC Mercury CCD area-
detector diffractometer

Absorption correction: numerical
(NUMABS; Higashi, 2000)
Tmin = 0.991, Tmax = 0.996

9107 measured reflections
2817 independent reflections
1921 reflections with I > 2�(I)
Rint = 0.043

Refinement

R[F 2 > 2�(F 2)] = 0.063
wR(F 2) = 0.180
S = 1.07
2817 reflections

122 parameters
H-atom parameters constrained
��max = 0.28 e Å�3

��min = �0.24 e Å�3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement:

CrystalClear; data reduction: CrystalClear; program(s) used to solve

structure: SIR2004 (Burla et al., 2005); program(s) used to refine

structure: SHELXL97 (Sheldrick, 2008); molecular graphics:

ORTEP-3 for Windows (Farrugia, 1997); software used to prepare

material for publication: WinGX (Farrugia, 1999).
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Comment

Solid-state packing effects play an important role in the performance of electronic and photonic materials (Curtis et al., 2004).
However, there has been relatively little research on the correlation between solid-state packing patterns and fluorescence
properties. Further, molecular design to control solid-state fluorescence is not fully understood. We have recently found
that the introduction of linear alkyl side chains onto anthracene nucleus at the 1, 4, 5 and 8 positions brought about drastic
changes in alkyl conformation, packing pattern, and solid-state fluorescence (Kitamura et al., 2007). To investigate the
effects of branched alkyl side chains, we embarked on the investigation on 1,4,5,8-tetraisoalkylanthracenes. Herein we report
the X-ray analysis of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The molecule possesses a center of inversion, and half of the formula
unit is crystallographically independent. The anthracene unit is essentially planar. The molecular structure is similar to that
of 1,4,7,10-tetraisopropyltetracene (Kitamura et al., 2010). Two terminal methyl groups of the two isopropyl groups at the
1 and 4 positions point upward, and two methyl groups of the other two isopropyl groups at 5 and 8 positions point down-
ward. Thus, the torsion angles C6—C1—C8—C9 and C3—C4—C11—C13 are 80.72 (18) and 107.76 (16)°, respectively.
Another two terminal methyl groups of the two isopropyl groups are nearly coplanar with the anthracene plane, and the
C2—C1—C8—C10 and C3—C4—C11—C12 torsion angles are 25.6 (2) and -15.2 (2)°, respectively. In the crystal, the
molecules adopt a herringbone-like (two-dimensional) arrangement as shown in Fig. 2. There are no π-π interatcions along
the stacking direction.

To examine the influence of crystal packing on the solid-state fluorescence properties, the fluorescence spectrum and the
absolute quantum yield of (I) were measured by a Hamamatsu Photonics PMA11 calibrated optical multichannel analyzer
with a solid-state blue laser (λex = 377 nm) and a Labsphere IS-040-SF integrating sphere, respectively. Crystals of (I)

exhibited a structured fluorescence spectrum with fluorescence maxima at 432 and 450 nm. The quantum yield of crystals
of (I) was very high (Φ = 0.80). Among 1,4,5,8-tetraalkylanthracenes, the n-propyl derivative had the largest quantum yield
of 0.85, indicating that the quantum yield of (I) is the second largest. Crystal packing without π-π stack and crystal rigidity
in the presence of bulky isopropyl groups probably lead to the enhancement of the fluorescence quantum yield.

Experimental

1,4,5,8-Tetraisopropylanthracene was prepared according to the method described by Kitamura et al. (2007). A mixture of
2,5-diisopropylfuran (1.03 g, 6.78 mmol) and 1,2,4,5-tetrabromobenzene (1.25 g, 3.17 mmol) in dry toluene (40 ml) was
cooled to 243 K. To the mixture, 1.6 M n-BuLi in hexane (6.0 ml, 9.6 mmol) was added dropwise over 10 min. Then the
mixture was warmed up to room temperature over 2 h and stirred at room temperature for additional 18 h. After quenching
with water, the aqueous layer was extracted with CHCl3. The combined organic layer was washed with brine and dried

over Na2SO4. After evaporation, the residue was subjected to slica-gel chromatography with (2:1)-hexane/CHCl3 to afford

bis(furan)adduct as a yellow solid (432 mg, 36%). The bis(furan)adduct (432 mg, 1.14 mmol) in EtOH (55 ml) was hydro-

http://dx.doi.org/10.1107/S1600536810030837
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genated over 10% Pd/C (85 mg) under atmospheric pressure at room temperature for 3 h. The catalyst was removed by
filtration, and the filtrate was evaporated under reduced pressure. To the residue, an ice-cooled solution of (1:5)-conc. HCl/
Ac2O (6 ml) was added. The mixture was stirred at room temperature for 3 h. After cooling with ice, water was added into

the mixture. The resultant mixture was extracted with CHCl3, and the extract was washed with aqueous Na2CO3 and brine,

and dried over Na2SO4. After evaporation of the solvent, column chromatography on silica gel with (2:1)-hexane/CHCl3
gave the title compound as a white solid (149 mg, 38%). Recrystallization was performed with Et2O to obtain colourless

single crystals of the title compound. 1H-NMR: δ 1.50 (d, J = 6.9 Hz, 24H), 3.87–3.59 (m, 4H), 7.36 (s, 4H), 9.01 (s, 2H);
13C-NMR: δ 14.06, 23.50, 28.60, 120.60, 129.41, 142.26, 137.03; EIMS: m/z (%) 346 (100); Elemental analysis for C26H34:

C 90.11, H 9.89%; found: C 89.86, H 9.86%.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C–H = 0.94 Å and Uiso(H) = 1.2Ueq(C)

for aromatic C—H, C–H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH, and C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for CH3

group.

Figures

Fig. 1. The molecular structure of (I), showing the atomic numbering numbering and 30%
probability displacement ellipsoids for non-H atoms. Symmetry code: (i) 1 -x, -y, -z.

Fig. 2. The packing diagram of (I). Hydrogen atoms have been omitted for clarity.

1,4,5,8-Tetraisopropylanthracene

Crystal data

C26H34 F(000) = 380

Mr = 346.53 Dx = 1.085 Mg m−3

Monoclinic, P21/c Melting point: 488 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
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a = 6.546 (3) Å Cell parameters from 2745 reflections
b = 10.357 (5) Å θ = 2.4–31.1°
c = 15.808 (8) Å µ = 0.06 mm−1

β = 98.289 (8)° T = 223 K

V = 1060.5 (9) Å3 Needle, colourless
Z = 2 0.50 × 0.07 × 0.05 mm

Data collection

Rigaku/MSC Mercury CCD area-detector
diffractometer 2817 independent reflections

Radiation source: rotating-anode X-ray tube 1921 reflections with I > 2σ(I)
graphite Rint = 0.043

Detector resolution: 14.7059 pixels mm-1 θmax = 29.1°, θmin = 2.4°

φ and ω scans h = −8→8
Absorption correction: numerical
(NUMABS; Higashi, 2000) k = −14→13

Tmin = 0.991, Tmax = 0.996 l = −21→13
9107 measured reflections

Refinement

Refinement on F2 0 restraints

Least-squares matrix: full Primary atom site location: structure-invariant direct
methods

R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained

wR(F2) = 0.180
w = 1/[σ2(Fo

2) + (0.0945P)2 + 0.0217P]
where P = (Fo

2 + 2Fc
2)/3

S = 1.07 (Δ/σ)max < 0.001

2817 reflections Δρmax = 0.28 e Å−3

122 parameters Δρmin = −0.23 e Å−3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The
cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between
s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is
used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional

R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
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C1 0.4015 (2) −0.00637 (14) 0.17133 (9) 0.0272 (3)
C2 0.2347 (2) 0.06330 (15) 0.18742 (9) 0.0323 (4)
H2 0.1976 0.0606 0.2427 0.039*
C3 0.1152 (2) 0.13954 (15) 0.12440 (9) 0.0309 (4)
H3 0.0041 0.1874 0.1397 0.037*
C4 0.1553 (2) 0.14606 (13) 0.04219 (9) 0.0254 (3)
C5 0.3279 (2) 0.07195 (13) 0.02069 (9) 0.0245 (3)
C6 0.4533 (2) −0.00120 (13) 0.08561 (8) 0.0245 (3)
C7 0.6226 (2) −0.06900 (13) 0.06259 (9) 0.0263 (3)
H7 0.7074 −0.1149 0.1054 0.032*
C8 0.5294 (2) −0.08656 (16) 0.24020 (9) 0.0336 (4)
H8 0.5737 −0.1653 0.2123 0.04*
C9 0.7238 (3) −0.0145 (2) 0.27785 (12) 0.0551 (5)
H9A 0.6861 0.0624 0.307 0.083*
H9B 0.801 0.0099 0.2324 0.083*
H9C 0.8083 −0.0699 0.3182 0.083*
C10 0.4106 (3) −0.1305 (2) 0.31140 (11) 0.0523 (5)
H10A 0.4928 −0.1925 0.3475 0.078*
H10B 0.2817 −0.1703 0.2865 0.078*
H10C 0.3817 −0.0565 0.3454 0.078*
C11 0.0299 (2) 0.23022 (14) −0.02482 (9) 0.0293 (3)
H11 −0.0029 0.1782 −0.0776 0.035*
C12 −0.1738 (2) 0.27689 (16) 0.00091 (11) 0.0363 (4)
H12A −0.2497 0.2037 0.0188 0.054*
H12B −0.2552 0.3188 −0.0475 0.054*
H12C −0.1459 0.3377 0.0478 0.054*
C13 0.1551 (3) 0.34794 (16) −0.04622 (11) 0.0412 (4)
H13A 0.0758 0.3967 −0.092 0.062*
H13B 0.2832 0.3193 −0.0642 0.062*
H13C 0.1855 0.4022 0.004 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0275 (7) 0.0305 (7) 0.0245 (7) −0.0017 (6) 0.0070 (6) 0.0001 (6)
C2 0.0338 (8) 0.0401 (9) 0.0251 (7) 0.0018 (7) 0.0115 (6) 0.0008 (6)
C3 0.0279 (7) 0.0345 (8) 0.0321 (8) 0.0042 (6) 0.0107 (6) −0.0020 (6)
C4 0.0240 (7) 0.0257 (7) 0.0271 (7) −0.0013 (6) 0.0053 (6) −0.0018 (6)
C5 0.0225 (7) 0.0263 (7) 0.0252 (7) −0.0018 (6) 0.0056 (6) −0.0028 (5)
C6 0.0245 (7) 0.0272 (7) 0.0227 (7) −0.0009 (6) 0.0061 (6) −0.0011 (6)
C7 0.0257 (7) 0.0294 (7) 0.0238 (6) 0.0020 (6) 0.0038 (6) 0.0007 (6)
C8 0.0351 (9) 0.0418 (9) 0.0258 (7) 0.0053 (7) 0.0106 (6) 0.0038 (6)
C9 0.0487 (11) 0.0736 (14) 0.0393 (10) −0.0036 (10) −0.0065 (9) 0.0062 (10)
C10 0.0560 (12) 0.0639 (13) 0.0418 (10) 0.0165 (10) 0.0230 (9) 0.0225 (9)
C11 0.0286 (7) 0.0305 (8) 0.0292 (7) 0.0049 (6) 0.0054 (6) −0.0009 (6)
C12 0.0313 (8) 0.0381 (9) 0.0401 (9) 0.0070 (7) 0.0069 (7) 0.0013 (7)
C13 0.0412 (9) 0.0374 (9) 0.0462 (9) 0.0056 (8) 0.0107 (8) 0.0105 (8)
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Geometric parameters (Å, °)

C1—C2 1.362 (2) C8—H8 0.99
C1—C6 1.4448 (18) C9—H9A 0.97
C1—C8 1.521 (2) C9—H9B 0.97
C2—C3 1.416 (2) C9—H9C 0.97
C2—H2 0.94 C10—H10A 0.97
C3—C4 1.364 (2) C10—H10B 0.97
C3—H3 0.94 C10—H10C 0.97
C4—C5 1.4463 (19) C11—C12 1.528 (2)
C4—C11 1.518 (2) C11—C13 1.534 (2)

C5—C7i 1.4009 (19) C11—H11 0.99
C5—C6 1.435 (2) C12—H12A 0.97
C6—C7 1.4033 (19) C12—H12B 0.97

C7—C5i 1.4009 (19) C12—H12C 0.97
C7—H7 0.94 C13—H13A 0.97
C8—C9 1.520 (3) C13—H13B 0.97
C8—C10 1.527 (2) C13—H13C 0.97

C2—C1—C6 117.28 (13) H9A—C9—H9B 109.5
C2—C1—C8 121.93 (12) C8—C9—H9C 109.5
C6—C1—C8 120.79 (12) H9A—C9—H9C 109.5
C1—C2—C3 122.72 (12) H9B—C9—H9C 109.5
C1—C2—H2 118.6 C8—C10—H10A 109.5
C3—C2—H2 118.6 C8—C10—H10B 109.5
C4—C3—C2 122.35 (13) H10A—C10—H10B 109.5
C4—C3—H3 118.8 C8—C10—H10C 109.5
C2—C3—H3 118.8 H10A—C10—H10C 109.5
C3—C4—C5 117.50 (13) H10B—C10—H10C 109.5
C3—C4—C11 122.28 (13) C4—C11—C12 113.63 (12)
C5—C4—C11 120.19 (12) C4—C11—C13 110.97 (13)

C7i—C5—C6 118.33 (12) C12—C11—C13 108.77 (13)

C7i—C5—C4 121.79 (13) C4—C11—H11 107.7
C6—C5—C4 119.88 (12) C12—C11—H11 107.7
C7—C6—C5 118.08 (12) C13—C11—H11 107.7
C7—C6—C1 121.72 (13) C11—C12—H12A 109.5
C5—C6—C1 120.19 (12) C11—C12—H12B 109.5

C5i—C7—C6 123.56 (13) H12A—C12—H12B 109.5

C5i—C7—H7 118.2 C11—C12—H12C 109.5
C6—C7—H7 118.2 H12A—C12—H12C 109.5
C9—C8—C1 110.83 (14) H12B—C12—H12C 109.5
C9—C8—C10 110.13 (15) C11—C13—H13A 109.5
C1—C8—C10 113.81 (13) C11—C13—H13B 109.5
C9—C8—H8 107.3 H13A—C13—H13B 109.5
C1—C8—H8 107.3 C11—C13—H13C 109.5
C10—C8—H8 107.3 H13A—C13—H13C 109.5
C8—C9—H9A 109.5 H13B—C13—H13C 109.5
C8—C9—H9B 109.5



supplementary materials

sup-6

C6—C1—C2—C3 −0.6 (2) C8—C1—C6—C7 −0.2 (2)
C8—C1—C2—C3 179.32 (14) C2—C1—C6—C5 −1.8 (2)
C1—C2—C3—C4 1.7 (2) C8—C1—C6—C5 178.27 (13)
C2—C3—C4—C5 −0.4 (2) C5—C6—C7—C5i −1.8 (2)

C2—C3—C4—C11 −178.60 (14) C1—C6—C7—C5i 176.64 (13)

C3—C4—C5—C7i 177.89 (13) C2—C1—C8—C9 −99.18 (17)

C11—C4—C5—C7i −3.8 (2) C6—C1—C8—C9 80.72 (18)
C3—C4—C5—C6 −2.0 (2) C2—C1—C8—C10 25.6 (2)
C11—C4—C5—C6 176.24 (12) C6—C1—C8—C10 −154.51 (15)

C7i—C5—C6—C7 1.7 (2) C3—C4—C11—C12 −15.2 (2)
C4—C5—C6—C7 −178.32 (12) C5—C4—C11—C12 166.61 (13)

C7i—C5—C6—C1 −176.76 (13) C3—C4—C11—C13 107.76 (16)
C4—C5—C6—C1 3.2 (2) C5—C4—C11—C13 −70.44 (17)
C2—C1—C6—C7 179.72 (14)
Symmetry codes: (i) −x+1, −y, −z.
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Fig. 1
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Fig. 2


